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Abstract

Explainability is essential for systems interacting with humans and other objects
during operation (e.g., autonomous vehicles). Humans need to understand and
anticipate the actions taken by the autonomous systems for trustful and safe coop-
eration. In this work, we aim to enable model explainability at the design stage
by incorporating expert domain knowledge into the model and propose Grounded
Relational Inference (GRI). It models an interactive system’s underlying dynamics
by inferring an interaction graph representing the agents’ relations. We ensure
an interpretable interaction graph by grounding the relational latent space into
semantic behaviors defined with expert domain knowledge. We demonstrate that it
can model simple interactive traffic scenarios under both simulation and real-world
settings, and generate interpretable graphs explaining the vehicle’s behavior by
their interactions.

1 Introduction

Deep learning has been utilized to address various autonomous driving problems [1, 2, 3]. However,
deep neural networks lack the transparency that helps people understand their underlying mechanism.
It is a crucial drawback for safety-critical applications with humans involved (e.g., autonomous
vehicles). Humans need to understand and anticipate the actions taken by the autonomous systems
for trustful and safe cooperation. In response to this problem, the concept of explainable AI (XAI)
was introduced. It refers to machine learning techniques that provide details and reasons that make
a model’s mechanism easy to understand [4]. Most of the existing works for deep learning models
focus on post-hoc explanations [4]. They enhance model explainability by unraveling the underlying
mechanisms after training: Vision-based approaches illustrate which segments of the input image
affect the outputs, with visual attention [5] or deconvolution [6]; Interaction-aware models identify
the agents that are critical to the decision-making procedure, with social attention in social LSTM
[7, 8] or graph attention in graph neural networks (GNN) [9, 10, 11, 12].

Although promising, post-hoc explanations could be ambiguous and falsely interpreted by humans
because of the non-interpretable nature of deep neural networks. Unless the model is interpretable
by design, it is deceiving to claim that the generated post-hoc explanation can capture the model’s
underlying mechanism. In this work, we aim to improve interpretability at the design stage and
develop a model that can generate interpretable explanations clearly defined in human domain
knowledge and operate as the explanations suggest. We consider the problem of interactive system
modeling—which is the foundation behind interaction-aware prediction and control models for
autonomous vehicles—and follow the practice in Neural Relational Inference (NRI) [12] to model an
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Figure 1: A motivating lane-changing scenario where we ask different models to control the red
vehicle. In contrast to other frameworks, our proposed GRI model infers the interaction graph on a
latent space grounded in yielding and cutting-in behaviors. It learns control policies that generate
behaviors consistent with their definitions in domain knowledge (e.g. traffic rules) and executes the
corresponding polices according to the inferred edge types.

interactive system by explicitly inferring its inherent interactions. Similar to NRI, our model outputs
an interaction graph with discrete edge variables corresponding to a cluster of pairwise interactions
between the agents. However, unlike NRI, which learns latent space in an unsupervised manner, we
aim to ground it in a set of interactive behaviors defined with expert domain knowledge.

As a running example, consider the scenario depicted in Fig. 1, where we ask different models to
control the red vehicle. Attention mechanisms can indicate the critical pixels or agents, but they
cannot recognize different effects—the two cars are mutually important but affect each other in
distinct ways. The NRI model can distinguish between different interactive behaviors. Still, the
latent space does not have explicit semantic meaning. In contrast, our model should determine the
interaction graph based on a latent space grounded in these two types of interactions. It learns control
policies that generate behaviors consistent with their definitions in domain knowledge (e.g., traffic
rules) and executes the corresponding policies according to the inferred edge types. Therefore, we
ensure a semantic interaction graph, which illustrates the model’s understanding of the scenario and
explain the action it takes.

A straightforward way to enable semantic relations is using supervision. Interaction labels can be
either obtained from human experts [13] or heuristic labeling functions [14]. However, accurate labels
are practically prohibitive because human intentions are intricate and unobservable. Inaccurate labels
could introduce bias and limit model capacity. Moreover, it is unclear if the model can understand the
semantic meaning behind the labels and synthesize the right behaviors. Instead, we recast relational
inference into an inverse reinforcement learning (IRL) problem and introduce structured reward
functions to ground the latent space. Concretely, the system is modeled as a multi-agent Markov
decision process (MDP), where the agents share a reward function that depends on the relational
latent space. We design structured reward functions based on expert domain knowledge to explicitly
define the interactive behaviors corresponding to the latent space. Compared to direct supervision,
we merely specify the function space of the reward for each type of interaction, but leave the reward
parameters and interaction graph—namely which reward function each agent follows—to be learned
from data without supervision signals.

To solve the formulated IRL problem, we propose Grounded Relational Inference (GRI). It has a
variational-autoencoder-like (VAE) GNN in NRI [12] as the backbone model. Additionally, we
incorporate the structured reward functions into the model as a decoder. A variational extension of
the adversarial inverse reinforcement learning (AIRL) algorithm is derived to train all the modules
simultaneously. Experiments show that GRI can model simple interactive traffic scenarios under
simulation and real-world settings, and generate interpretable graphs explaining the vehicle’s behavior
by their interactions. Moreover, the interpretable latent space enables humans to govern the model
and ensure safety under unfamiliar situations. We believe that GRI is a critical step towards the next
level of explainable models for autonomous driving and other multi-agent systems.
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2 Related Work

Our model combines graph neural networks and adversarial inverse reinforcement learning for
interactive system modeling. This section gives a concise literature review on these two topics and
summarizes the existing works closely related to ours.

Interaction modeling using GNN. GNN has been widely applied for interactive system modeling
[11, 15, 16]. VAIN [9] applied attention in multi-agent modeling. The attention map unravels
the interior interaction structure to some extent. An approach closely related to ours is NRI [12],
which modeled the interaction structure explicitly with discrete relational latent space. We explain
the difference between NRI and our proposed method in Sec. 1 and 5. Another related approach
in the autonomous driving domain is [14], which also modeled interactive driving behavior with
semantically meaningful interactions but in a supervised manner.

Adversarial inverse reinforcement learning. Our work is related to two types of IRL approaches,
multi-agent and latent AIRL algorithms. Yu et al. [17] proposed a multi-agent AIRL framework for
Markov games under correlated equilibrium. The PS-GAIL algorithm [18] considered a multi-agent
environment in the driving domain and extended GAIL [19] to model the interactive behaviors. In
[20], they augmented the reward in PS-GAIL as a principle manner to specify prior knowledge,
which shares the same spirit with our method. Latent AIRL models integrate a VAE into either the
discriminator or generator for different purposes. Wang et al. [21] conditioned the discriminator on
the embeddings generated by a VAE trained separately using behavior cloning. VDB [22] constrained
information contained in the discriminator’s internal representation to balance the training procedure
for adversarial learning algorithms. The PEMIRL framework [23] encoded the demonstration into a
contextual latent space to achieve meta-IRL. Though studied in a different context, it is conceptually
similar to our framework as both its generator and discriminator depend on the latent variables.

3 Background: Neural Relational Inference

In this section, we briefly introduce NRI to get the readers familiar with the relational inference prob-
lem and related terminologies that will appear throughout the paper. In NRI, Kipf et al. [12] represent
an interactive system as a complete bi-directed graph Gscene = (V, E) with vertices V = {vi}Ni=1 and
edges E = {ei,j = (vi, vj) | i 6= j},1 where each vertex corresponds to an object. The NRI model is
formalized as a VAE with a GNN encoder, qφ(z|x), which infers the underlying interactions, and a
GNN decoder, pη(x|z), which synthesizes the system dynamics given the interactions.

Specifically, the model takes a state trajectory as input, denoted by x =
(
x0, . . . ,xT−1

)
where

xt = {xt1, . . . ,xtN}.2 The vector xti ∈ Rn denotes the state vector of object vi at time t. The encoder
operates over Gscene, with xi as the node feature of vi. It infers the posterior distribution of the edge
type zi,j for all the edges, collected into a single vector z. The decoder operates over an interaction
graph Ginteract—which is constructed by assigning sampled z to the edges of Gscene—together with
the initial state. Based on them, the decoder reconstructs x. The model is trained by maximizing the
evidence lower bound (ELBO).

4 Problem Formulation

As stated before, we ground the relational latent space in GRI by reformulating the relational inference
problem into an IRL problem. We start with modeling the interactive system as a multi-agent MDP
with graph representation. As in NRI, the system has an underlying interaction graph Ginteract.
The discrete latent variable zi,j takes a value from 0, 1, . . . ,K − 1. It indicates the type of relation
between vi and vj in respect to its effect on vj . Additionally, we assume the objects of the system are
homogeneous intelligent agents who make decisions based on their interactions with others.

Concretely, each agent is modeled with identical state space X , action space A, transition operator T
and reward function r. At time step t, the reward of agent vj depends on the states and actions of

1The edge ei,j refers to the one pointing from vi to vj .
2Alternatively, the input sequence can be decomposed into x = (x1, . . . ,xN ) where xi =

{
x0
i , . . . ,x

T−1
i

}
.
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Figure 2: Architecture of grounded relational inference model.

itself and the pairwise interactions between itself and all its neighbors:

rθ,ψ(vtj , zj) = rnθ (xtj ,a
t
j) +

∑
i∈Nj

K∑
k=1

1(zi,j = k)re,kψk (xti,a
t
i,x

t
j ,a

t
j), (1)

where Nj is the set of vj’s neighbouring nodes, zj is the vector collecting {zi,j}i∈Nj , r
n
θ is the node

reward function, and re,kψk is the edge reward function for the kth type of interaction. We utilize
expert domain knowledge to design re,kψk , so that the corresponding interactive behavior emerges by
maximizing the rewards. Particularly, the edge reward equals to zero for k = 0, indicating the action
taken by vj does not depend on its interaction with vi.

We assume the agents act cooperatively to maximize the cumulative reward of the system:

Rθ,ψ(τ , z) =

T−1∑
t=0

rθ,ψ
(
xt,at, z

)
=

T−1∑
t=0

N∑
j=1

rθ,ψ
(
vtj , zj

)
,

with a joint policy denoted by πη (at|xt, z). The cooperative assumption is not necessarily valid for
generic multi-agent systems [17], but it simplifies the training procedure significantly. We will leave
the extension of the proposed method to non-cooperative interactive systems as a future work.

Given a demonstration dataset, we aim to infer the underlying reward function and policy. Different
from a typical IRL problem, both rθ,ψ and πη depend on z. Therefore, we need to infer the distribution
p(z|τ ) to solve the IRL problem.

5 Grounded Relational Inference

We now present the GRI model to solve the IRL problem. The model consists of three modules
modeled by message-passing GNNs [24]: an encoder infers the posterior distribution of edge types, a
policy decoder generates control actions conditioned on the edge variables sampled from the posterior
distribution, and a reward decoder models the rewards conditioned on the inferred edge types.

5.1 Architecture

The overall model structure is illustrated in Fig. 2. Given a demonstration trajectory τE ∈ DE, the
encoder operates over Gscene and infers the distribution p(z|τE) as qφ(z|τE). The policy decoder
operates over a Ginteract sampled from the inferred qφ(z|τE) and models the policy πη (at|xt, z).
Given the initial state of τE, we sample a trajectory τG by sequentially sampling at from πη (at|xt, z)
and propagating the state. The state is propagated with either the transition operator T if given, or a
simulating environment if T is not accessible. Since these two modules are essentially the same as in
NRI, we omit the detailed model structures here and include them in Appx. 8.1.

Afterwards, we use the reward decoder to compute the cumulative rewards of τG and τE conditioned
on the sampled Ginteract. The reward decoder is in the form of Eqn. (1). Additionally, we augment the
functions rnθ and re,kφk with MLP shaping terms to mitigate the reward shaping effect [25], resulting
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max
η

min
θ,ω,ψ,ξ,φ

= EτE∼πE(τ )

{
Ez∼qφ(z|τE)

[
−
T−1∑
t=0

logDθ,ω,ψ,ξ,η(xE,t,aE,t,xE,t+1, z)

− EτG∼πη(τ |z)

T−1∑
t=0

log
(
1−Dθ,ω,ψ,ξ,η(xG,t,aG,t,xG,t+1, z)

) ]}
,

s.t. EτE∼πE(τ )

{
DKL

[
qφ
(
z|τE

)
)||p(z)

]}
6 Ic,

(2)

in:

fnθ,ω(xtj ,a
t
j ,x

t+1
j ) = rnθ (xtj ,a

t
j) + hnω(xt+1

j )− hnω(xtj),

fe,kψk,ξk(xti,a
t
i,x

t+1
i ,xtj ,a

t
j ,x

t+1
j ) = re,kψk (xti,a

t
i,x

t
j ,a

t
j) + he,kξk (xt+1

i ,xt+1
j )− he,kξk (xti,x

t
j).

The shaped reward function, fθ,ω,ψ,ξ
(
xt,at,xt+1, z

)
, together with the policy model, defines the

discriminator which distinguishes τG from τE:

Dθ,ω,ψ,ξ,η(xt,at,xt+1, z) =
exp

{
fθ,ω,ψ,ξ

(
xt,at,xt+1, z

)}
exp {fθ,ω,ψ,ξ (xt,at,xt+1, z)}+ πη (at|xt, z)

.

5.2 Training

We aim to train the three modules simultaneously. Consequently, we incorporate the encoder model
qφ
(
z|τE

)
into the objective function of AIRL, resulting in the optimization problem (2). The encoder

is integrated into the minimization problem because the reward function has a direct dependence
on the latent space. The model is then trained by solving problem (2) in an adversarial scheme:
we alternate between training the encoder and reward for the minimization problem and training
the policy for the maximization problem. The constraint enforces an upper bound Ic on the KL-
divergence between qφ

(
z|τE

)
and the prior p(z). A sparse prior is chosen to encourage sparsity in

Ginteract. It has the similar regularization effect as the DKL term in ELBO. We borrow its format
from variational discriminator bottleneck (VDB) [22]. Although having different motivation, we
adopt it because the constrained problem can be relaxed by introducing a Lagrange multiplier β.
During training, β is updated through dual gradient descent as follows:

β ← max
(
0, αβ

(
E
{
DKL

[
qφ
(
z|τE

)
)||p(z)

]}
− Ic

))
. (3)

We find the adaptation scheme particularly advantageous as the model can focus on inferring z for
reward learning after satisfying the sparsity constraint, because the magnitude of β decreases towards
zero once the constraint is satisfied. However, it is worth noting that our framework does not rely on
the bottleneck constraint to induce an interpretable latent space as in [26]. In contrast, GRI relies
on the structured reward functions to ground the latent space into semantic interactive behaviors.
The bottleneck serves as a regularization to find out the minimal interaction graph to represent the
interactions. In fact, we show in the experiments that the constraint itself is not sufficient to induce a
sparse and interpretable interaction graph, by training baseline NRI models with the same constraint
and weight update scheme.

In general, when the dynamics T is unknown or non-differentiable, maximum entropy RL algorithms
[27] are adopted to optimize the policy. We assume known and differentiable dynamics in this work,
which is a reasonable assumption for the investigated scenarios. It allows us to directly backpropagate
through the trajectory for gradient estimation, which simplifies the training procedure.

6 Experiments

We evaluated the proposed GRI model on a synthetic dataset as well as a naturalistic traffic dataset.
The synthetic data were generated using policy models trained given the ground-truth reward function
and interaction graph. We intend to verify if GRI can induce an interpretable relational latent space
and infer the underlying relations precisely. The naturalistic traffic data were extracted from the
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Figure 3: Synthetic and naturalistic traffic scenarios.

NGSIM dataset. We aim to validate if GRI can model real-world traffic scenarios effectively with the
grounded interpretable latent space. Unlike synthetic agents, we do not have the privilege to access
the graph governing human drivers’ interactions. Instead, we constructed hypothetical graphs after
analyzing the segmented data. The hypotheses reflect humans’ understanding of the traffic scenarios.
We would like to see if GRI can model real-world interactive systems in the same way as humans.
We claim the model interpretable if the inferred interaction graphs are consistent with the hypotheses.

To evaluate a trained model, we sample a τ exp from the test dataset and extract the maximum posterior
probability (MAP) estimate of edge variables, ẑ, from qφ(z|τ exp). Afterward, we obtain a single
sample of trajectories τ̂ by executing the mean value of the policy outputs. The root mean square
errors (RMSE) of states and the accuracy of Ginteract are selected as the evaluation metrics, which are
computed based on ẑ, τ̂ , τ exp, and the ground truth or hypothetical latent variables denoted by zexp:

RMSEε =

√√√√ 1

(N − 1)T

N∑
j=1

T−1∑
t=0

(εexp,tj − ε̂tj)2, Accuracy =

∑N
i=1

∑N
j=1,j 6=i 1(zexpi,j = ẑi,j)

N(N − 1)
.

If multiple edge types exist, we test all the possible permutations of edge types and report the one
with the highest graph accuracy for NRI.

6.1 Synthetic Scenes

We designed two synthetic scenarios, car-following (CF) and lane-changing (LC). The two scenes
and their underlying interaction graphs are illustrated in Fig. 3. In both scenarios, we have a leading
vehicle whose behavior does not depend on the others, and its trajectory is given without the need for
reconstruction. We assume it runs at a constant velocity. The other vehicles interact with each other
and the leading one in different ways. In CF, we model the system with two types of edges: zi,j = 1
means that Vehicle j follows Vehicle i; zi,j = 0 means that Vehicle j does not interact with Vehicle i.
In LC, two additional edge types are introduced: zi,j = 2 means that Vehicle j yields to Vehicle i;
zi,j = 3 means that Vehicle j cuts in front of Vehicle i. The MDPs for the tested scenarios, including
the dynamics models and the designed structured reward functions, are summarized in Appx. 8.2.

Results. After training the expert policy, we generated the demonstration dataset by randomly
sampling all the vehicles’ initial states. For each scenario, we trained a GRI model with the policy
decoder (6)-(8) introduced in Appx. 8.1. As a baseline, we trained a NRI model with the same
encoder and policy decoder. The same adaptation scheme in Eqn. (3) was applied to enforce sparsity.

The results are summarized in Table 1. The NRI model can reconstruct the trajectories with smaller
errors. However, it does not recover the ground-truth Ginteract precisely, which indicates a relational
latent space that is different from the one underlying the demonstration; Therefore, the edge variables
cannot be interpreted as those semantically meaningful behaviors. In contrast, our GRI model
interprets the interactions in the same way as the domain knowledge and recovers the interaction
graph with high accuracies.

To further evaluate the models’ explainability, we computed the empirical distribution of the estimated
edge variables ẑ over the test dataset (Fig. 4). The distribution concentrates on a single interaction
graph for both models in both scenarios—as opposed to the case on the naturalistic traffic dataset,
which we will mention later—because the synthetic agents have the same interaction patterns over
all the samples. In CF, the interaction graph generated by the NRI model has two additional edges
compared to the ground-truth one: z2,0 = 1 and z0,1 = 1. It is relatively reasonable to have z2,0 = 1
because Vehicle 2 indirectly affects Vehicle 0. On the other hand, z0,1 = 1 is not consistent with the
inherent causality and cannot be interpreted as car-following as the other edges. In LC, the NRI model
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Figure 4: The empirical distribution of estimated edge variables ẑ over the test dataset in the synthetic
scenarios (CF: car following, LC: lane changing). We summarize the results in multiple adjacency
matrices corresponding to different edge types. In the adjacency matrix corresponding to the kth type
of interaction, the element Ai,j indicates the relative frequency of zj,i = k, where zj,i is the latent
variable for the edge from node j to node i.

treats the edges e1,0, e0,1, and e2,1 the same, which makes it challenging to interpret the semantic
meaning behind because they represent different interactive behaviors in the expert demonstration.

Some may argue that predictive accuracy is more critical than explainability when evaluating the
models. We want to emphasize that explainability is at least an equally important metric, especially
for human-robot interaction. With GRI, the safety driver or passengers of an autonomous vehicle can
override the inferred Ginteract if the model misunderstands the scenario. We show in Appx. 8.4 that,
because of the semantic meaningful latent space and policy, the GRI policy can induce behaviors
suggested by the enforced graph even in novel circumstances. It implies a safe and reliable way to
operate the autonomous vehicle in unfamiliar situations through trustful cooperation with humans,
which cannot be achieved by an inexplicable model. Such kind of safety assurance is essential when
deploying autonomous vehicles in real-world environments.

6.2 Naturalistic Traffic Scenes

To evaluate the proposed method in real-world traffic scenarios, we investigated the same scenarios
as in the synthetic case, car-following, and lane-changing. We segmented data from the Highway-101
and I-80 datasets of NGSIM. Afterward, we further screened the data to select those interactive
samples and ensure that no erratic swerving or multiple lane changes occur. The hypotheses for
the two scenarios are depicted in Fig. 3. The one for CF is identical to the ground-truth interaction
graph for the synthetic agents. However, we proposed a different hypothesis for LC. We excluded the
cutting-in relation to reduce the number of edge types and therefore simplify the training procedure.
Moreover, we defined the interactions according to the vehicles’ lateral position. We say that a vehicle
yields to its preceding vehicle if they drive in neighboring lanes, whereas it follows the preceding one

Table 1: Performance Comparison on Synthetic Dataset

(a) Car-Following Scenario (T = 20,∆t = 0.2s)

Model RMSEx(m) RMSEv(m/s) Accuracy(%)
GRI 0.241± 0.125 0.174± 0.068 100.00± 0.00
NRI 0.047± 0.024 0.056± 0.0148 66.70± 0.00

(b) Lane-Changing Scenario (T = 30,∆t = 0.2s)

Model RMSEx(m) RMSEy(m) RMSEv(m/s) Accuracy(%)
GRI 0.636± 0.297 0.273± 0.060 0.344± 0.135 99.95± 0.01
NRI 0.116± 0.046 0.197± 0.049 0.084± 0.022 66.70± 0.00

7



NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

LC – Following Edge

LC – Yielding Edge
NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

LC – Following Edge

LC – Yielding Edge
NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

LC – Following Edge

LC – Yielding Edge
NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

NRI GIRI

LC – Cutting-in Edge

NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

NRI GIRI

LC – Cutting-in Edge

NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

NRI GIRI

LC – Cutting-in Edge

NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

NRI GIRI

LC – Cutting-in Edge

NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

NRI GIRI

LC – Cutting-in Edge

NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

NRI GIRI

LC – Cutting-in Edge

NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

NRI GIRI

LC – Cutting-in Edge

NRI GIRI

CF – Following Edge

NRI GIRI

LC – Following Edge

NRI GIRI

LC – Yielding Edge

NRI GIRI

LC – Cutting-in Edge

Figure 5: The empirical distribution of estimated edge variables ẑ over the test dataset in the
naturalistic traffic scenarios. See Fig.4 on how to interpret the results.

if they are in the same lane. We omit the detailed description of the dynamics models and reward
functions and summarize them in Appx. 8.3 due to the limited space.

Results. For each scenario, we trained a GRI model with the recurrent policy decoder (9)-(12) in
Appx. 8.1. As in the synthetic scene, we trained a NRI model with the same encoder, policy decoder,
and the adaptation scheme as a baseline approach.

The results are summarized in Table 2. In both scenarios, the NRI model slightly outperforms our
model in trajectory reconstruction, but the RMSEs of the two models are comparable. Meanwhile,
GRI dominates NRI in graph accuracy. We visualize the interaction graphs in Fig. 5. One interesting
observation is that the graphs inferred by NRI have more edges in general. We want to emphasize that
both models are trained under the same sparsity constraint. The results imply that we can guide the
model to explore a clean and sparse representation of interactions by incorporating relevant domain
knowledge. Moreover, the NRI model assigns the same edge type to both edges between a pair
of agents. It makes the graphs less interpretable because the vehicles ought to affect each other in
different ways. On the other hand, even if different from the hypotheses, our GRI model tends to
infer sparse graphs with directional edges.

Table 2: Performance Comparison on Naturalistic Traffic Dataset

(a) Car-Following Scenario (T = 30,∆t = 0.2s)

Model RMSEx(m) RMSEv(m/s) Accuracy(%)
GRI 1.700± 1.005 0.721± 0.363 100.00± 0.00
NRI 1.436± 0.880 0.650± 0.328 64.09± 0.08

(b) Lane-Changing Scenario (T = 40,∆t = 0.2s)

Model RMSEx(m) RMSEy(m) RMSEv(m/s) Accuracy(%)
GRI 7.118± 3.647 0.764± 0.336 4.320± 2.392 98.55± 0.06
NRI 6.532± 3.822 0.330± 0.181 4.291± 2.544 28.98± 0.08

7 Discussion and Conclusion

In this work, we propose Grounded Relational Inference (GRI), which models an interactive system’s
underlying dynamics by inferring the agents’ semantic relations. By incorporating structured reward
functions, we ground the relational latent space into semantically meaningful behaviors defined with
expert domain knowledge. Therefore, we assure an interpretable interaction graph at the design
stage. We demonstrate that it can model simple traffic scenarios under both simulation and real-world
settings, and generate interpretable graphs explaining the vehicle’s behavior by their interactions.

Although we limit our experimental study to the autonomous driving domain, the model itself is
formulated without specifying the context. As long as proper domain knowledge is available, the
proposed method can be extended naturally to other fields (e.g., human-robot interaction). However,
there are several technical gaps we need to bridge before extending the current framework to more
complicated traffic scenarios and interactive systems in other fields. One gap between the current
model and these practical modules is graph dynamics. Throughout the paper, we assume a static
interaction graph over the time horizon. We will investigate how to incorporate dynamic graph
modeling into the current framework. Another gap is the cooperative assumption, which we would
like to remove in the future so that the framework can be generalized to non-cooperative scenarios.
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8 Appendix

8.1 Graph Neural Network Model Details

In terms of model structure, both the encoder and policy decoder are built based on node-to-node
message-passing [24], consisting of a node-to-edge message-passing and an edge-to-node message-
passing:

v → e : hli,j = f le(h
l
i,h

l
j ,xi,j), (4)

e→ v : hl+1
j = f lv(

∑
i∈Nj

hli,j ,xj), (5)

where hli is the embedded hidden state of node vi in the lth layer and hli,j is the embedded hidden state
of the edge ei,j . The features xi and xi,j are assigned to the node vi and the edge ei,j respectively
as inputs. Nj denotes the set of the indices of vi’s neighbouring nodes connected by an incoming
edge. The functions f le and f lv are neural networks for edges and nodes respectively, shared across
the graph within the lth layer of node-to-node massage-passing.

GNN Encoder. The GNN encoder is essentially the same as in NRI. It models the posterior
distribution as qφ(z|τ ) with the following operations:

h1
j = femb(xj),

v → e : h1
i,j = f1e (h1

i ,h
1
j ),

e→ v : h2
j = f1v

(∑
i 6=j

h1
i,j

)
,

v → e : h2
i,j = f2e (h2

i ,h
2
j ),

qφ(zi,j |τ ) = softmax
(
h2
i,j

)
,

where f1e , f
1
v and f2e are fully-connected networks (MLP) and femb is a 1D convolutional networks

(CNN) with attentive pooling.

GNN Policy Decoder. The policy operates over Ginteract and models the distribution πη (at|xt, z),
which can be factorized with πη

(
atj |xt, z

)
. We model πη as a Gaussian distribution with the mean

value parameterized by the following GNN:

v → e : h̃ti,j =

K∑
k=0

1(zi,j = k)f̃ke (xti,x
t
j), (6)

e→ v : µtj = f̃v

(∑
i 6=j

h̃ti,j

)
, (7)

πη
(
atj |xt, z

)
= N (µtj , σ

2I). (8)

Alternatively, the model capacity is improved by using a recurrent policy πη
(
atj |xt, . . . ,x1, z

)
;

Namely, the agents take actions according to the historical trajectories of the system. We follow the
practice in [12] and add a GRU unit to obtain the following recurrent model:

v → e : h̃ti,j =

K∑
k=0

1(zi,j = k)f̃ke

(
h̃ti, h̃

t
j

)
, (9)

e→ v : h̃t+1
j = GRU

(∑
i 6=j

h̃ti,j ,x
t
j , h̃

t
j

)
, (10)

µtj = fout

(
h̃t+1
j

)
, (11)

πη
(
atj |xt, . . . ,x1, z

)
= N (µtj , σ

2I), (12)

where h̃ti is the recurrent hidden state encoding the historical information up to the time step t− 1.
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8.2 Synthetic Scene MDPs Specification

The MDPs for the synthetic scenarios are specified as follows. In CF, since the vehicles mainly
interact in longitudinal direction, we model their dynamics with 1D point-mass model. Specifically,
the dynamics is governed by the following equations:

xt+1
j = xtj + vtj∆t+

1

2
atj∆t

2, (13)

vt+1
j = vtj + atj∆t, (14)

at+1
j = atj + δatj∆t, (15)

where xtj is the longitudinal coordinate, vtj is the velocity, atj is the acceleration, δatj is the jerk, and
∆t is the sampling time. In LC, we consider both longitudinal and lateral motions and model the
vehicles as Dubin’s cars:

xt+1
j = xtj + vtj cos(θtj)∆t,

yt+1
j = ytj + vtj sin(θtj)∆t,

vt+1
j = vtj + atj∆t,

θt+1
j = θtj + ωtj∆t,

at+1
j = atj + δatj∆t,

ωt+1
j = ωtj + δωtj∆t,

where ytj is the lateral coordinate, θtj is the yaw angle, ωtj is the yaw rate, δωtj is the yaw acceleration,
and the remaining terms are the same as in (13)-(15).

The structured reward functions were designed based on expert domain knowledge (e.g. transportation
studies [28, 29]). We mainly referred to [13] in this paper. For the car-following behavior, its reward
function is defined as follows:

re,1ψ1

(
xti,x

t
j

)
=− (1 + exp(ψ1,0)) gIDM(xti,x

t
j)

− (1 + exp(ψ1,1)) gdist(x
t
i,x

t
j)

− (1 + exp(ψ1,2)) glat(x
t
i,x

t
j),

where the features are defined as:

gIDM(xti,x
t
j) =

(
max

(
xti − xtj , 0

)
−∆xIDM,t

i,j

)2
, (16)

gdist(x
t
i,x

t
j) = exp

(
−
(
max

(
xti − xtj , 0

))2
ζ2

)
, (17)

glat(x
t
i,x

t
j) =

(
ytj − gcenter(yti)

)2
.

The feature gIDM suggests a spatial headway ∆xIDM,t
i,j derived from the intelligent driver model

(IDM) [28]. The feature fdist ensures a minimum collision-free distance. We penalize the following
vehicle for surpassing the preceding one with the help of xIDM,t

i,j in Eqn. (16) and Eqn. (17). The
last feature glat exists only in LC. It regulates the following vehicle to stay in the same lane as the
preceding one with the help of gcenter, which determines the lateral coordinate of the corresponding
centerline based on the position of the preceding vehicle.

The reward function for yielding is defined as:

re,2ψ2

(
xti,x

t
j

)
=− (1 + exp(ψ2,0)) gyield(xti,x

t
j)

− (1 + exp(ψ2,1)) gdist(x
t
i,x

t
j).

The feature gdist is defined in Eqn. (17). The other feature gyield suggests a spatial headway
appropriate for yielding:

gyield(xti,x
t
j) =1

(
gcenter(y

t
j) = gcenter(y

t
i)
)
gIDM(xti,x

t
j)

+1
(
gcenter(y

t
j) 6= gcenter(y

t
i)
)
ggoal(x

t
i,x

t
j),

ggoal(x
t
i,x

t
j) =

(
max

(
xti − xtj −∆xyield, 0

))2
. (18)
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The suggested headway is set to be a constant value, ∆xyield, when the other vehicle is merging, and
switches to ∆xIDM,t

i,j once the merging vehicle enters into the same lane, where its behavior becomes
consistent with car following.

The reward function for cutting-in is quite similar:

re,3ψ3

(
xti,x

t
j

)
=− (1 + exp(ψ3,0)) ggoal(x

t
j ,x

t
i)

− (1 + exp(ψ3,1)) gdist(x
t
j ,x

t
i),

where the features are defined as in Eqn. (17) and Eqn. (18), but with the input arguments switched,
because the merging vehicle should stay in front of the yielding one.

Apart from the edge rewards, all the agents share the same node reward function. The following one
is adopted for LC:

rnθ (xtj ,a
t
j) =− (1 + exp(θ0)) fv(x

t
j)

− (1 + exp(θ1:3))
ᵀ
fstate(x

t
j)

− (1 + exp(θ4:5))
ᵀ
faction(atj)

− (1 + exp(θ6)) flane(x
t
j),

where fstate and faction take the element-wise square of
[
atj θ

t
j ω

t
j

]
and

[
δatj δω

t
j

]
respectively. The

feature fv is the squared error between vtj and the speed limit vlim. The last term flane penalizes
the vehicle for staying close to the lane boundaries. For CF, we simply remove those terms that are
irrelevant in 1D motion.

In all the reward functions, the parameters collected in ψ and θ are unknown during training and
inferred by GRI. We take the exponents of them and add one to the results. It enforces the model to
use the features when modeling the corresponding interactions.

8.3 Naturalistic Traffic Scene MDPs Specification

The node dynamics is the same as in the synthetic scene for CF. For LC, since we did not have
accurate heading information, we adopted 2D point-mass model instead. Since the behavior of human
drivers is much more complicated than the synthetic agents, we designed reward functions with larger
model capacity using neural networks. In CF, the reward functions are defined as follows:

re,1ψ1

(
xti,x

t
j

)
=− (1 + exp(ψ1,0)) gNN

v (xti,x
t
j)

− (1 + exp(ψ1,1)) gNN
s (xti,x

t
j),

rnθ
(
xtj ,a

t
j

)
=− (1 + exp(θ0)) fNN

v (xtj)

− (1 + exp(θ1)) facc(x
t
j)

− (1 + exp(θ2)) fjerk(xtj ,a
t
j),

where the features are defined as:

fNN
v (xtj) =

(
vtj − h1(xtj)

)2
,

gNN
v (xti,x

t
j) =

(
vtj − h2(xti,x

t
j)
)2
,

gNN
s (xti,x

t
j) = ReLU

(
h3
(
xti,x

t
j

)
− xti + xtj

)2
.

The features facc and fjerk penalize the squared magnitude of acceleration and jerk. The functions
h1, h2 and h3 are neural networks with ReLU output activation. The feature gNN

s is the critical
component which shapes the car-following behavior. It learns a non-negative reference headway and
penalizes the following vehicle for violating it. The feature gNN

v and fNN
v suggest reference velocities

considering interaction and merely itself respectively.

In LC, the edge reward function for car-following and the node reward function are similar to those
in CF, with additional terms for lateral position, velocity and acceleration. To design the yielding
reward, we define a collision point of two vehicles based on their states. We approximate the vehicles’
trajectories as piecewise-linear between sequential timesteps, and compute the collision point as the
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Figure 6: Collision point diagram. At every timestep, we calculate the agents’ heading vectors by
approximating the motion as linear. We define the intersection between these vectors as the collision
point, where two agents would collide if neither of them yields.

intersection between their trajectories (Fig. 6). We threshold the point if it exceeds a hard-coded range
of interest (e.g. if it is behind the vehicle or their distance is greater than certain value). Afterwards,
we define the distance-to-collision (dpoc) as the longitudinal distance from the vehicle to the collision
point, and the time-to-collision (Tcol) as the time to reach the collision point calculated by dividing
dpoc with the velocity of the vehicle. Then the yielding reward function is defined as follows:

re,2ψ2

(
xti,x

t
j

)
=− (1 + exp(ψ2,0)) gNN

spatial(x
t
i,x

t
j)

− (1 + exp(ψ2,1)) gNN
time(x

t
i,x

t
j),

where

gNN
spatial(x

t
i,x

t
j) = ReLU

(
(xj − xpoc)− hdpoc(x

t
i,x

t
j)
)2
,

gNN
time(x

t
i,x

t
j) = ReLU

(
hTcol

(xti,x
t
j)− (Tcoli − Tcolj )

)2
.

The functions hdpoc
and hTcol

are neural networks with ReLU output activation. The gspatial term
learns a spatial aspect of the yield behavior and compares the agent’s distance from the estimated
collision-point with the NN-learned safe reference within which the LC maneuver can be done. The
second term gtime adds a temporal aspect to yield and compares a learned safe headway time and
to the difference in time-to-collision for the two vehicles. The intuition behind is to ensure that the
vehicles do not occupy the same position at the same time.

8.4 Out-of-distribution Experiment

In this section, we report an experiment that illustrates GRI’s advantages because of its semantic
meaningful latent space and policy model. In the synthetic scenarios, we shifted the distribution of
initial states: In CF, the longitudinal distance between two vehicles was sampled from unif(2, 4)
instead of unif(4, 8); In LC, the same distance was sampled from unif(8, 12) instead of unif(6, 8).
Afterward, we enforced the ground-truth Ginteract, and ran the policy decoders to generate the
trajectories for comparison with the ones generated by the expert. The results are summarized
in Table 3. The GRI policy induces relatively consistent behaviors with the expert, whereas the
trajectories generated by the NRI policy deviate significantly from the expert ones, especially in LC.
The experiment is analogous to the case where the autonomous vehicle encounters an unfamiliar
situation. The results show the advantages of GRI under such circumstances. The safety driver
or passengers can override the inferred Ginteract to ensure safety if the model misunderstands the
scenario. Because of the semantic meaningful latent space and policy model, the desired behavior
will emerge as expected. In contrast, an inexplicable model does not enable the same safety assurance
because it models the interactions with a cluster of uninterpretable behaviors. Fig. 7 visualizes an
exaggerated but illustrative example to demonstrate this point. We deliberately placed the leading
car behind the following one at the initial timestep and enforced the same Ginteract as usual. The
GRI policy still prompts the car-following behavior: It slows down the vehicle until the leading one
surpasses it. On the other hand, the NRI policy does not behave as Ginteract suggests.
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GRI

GRI

Figure 7: Examples where the leading car is placed behind the following one at the initial timestep.
The GRI policy still prompts the car-following behavior, but the NRI policy does not behave as
Ginteract suggests.

Table 3: Performance Comparison on Shifted Synthetic Dataset

(a) Car-Following Scenario (T = 20,∆t = 0.2s)

Model RMSEx(m) RMSEv(m/s)
GRI (Policy) 0.907± 0.523 0.727± 0.243
NRI (Policy) 1.745± 0.427 0.866± 0.180

(b) Lane-Changing Scenario (T = 30,∆t = 0.2s)

Model RMSEx(m) RMSEy(m) RMSEv(m/s)
GRI (Policy) 0.689± 0.281 1.107± 0.551 0.310± 0.083
NRI (Policy) 11.858± 2.926 1.475± 0.522 3.776± 0.753
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